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ABSTRACT 34 

Hyperspectral imaging is a widely used technology for industrial and scientific purposes, but 35 

the high cost and large size of commercial setups have made them impractical for most basic 36 

research. Here, we designed and implemented a fully open source and low-cost hyperspectral 37 

scanner based on a commercial spectrometer coupled to custom optical, mechanical and 38 

electronic components. We demonstrate our scanner’s utility for natural imaging in both 39 

terrestrial and underwater environments. Our design provides sub-nm spectral resolution 40 

between 350-1000 nm, including the UV part of the light spectrum which has been mostly 41 

absent from commercial solutions and previous natural imaging studies. By comparing the full 42 

light spectra from natural scenes to the spectral sensitivity of animals, we show how our 43 

system can be used to identify subtle variations in chromatic details detectable by different 44 

species. In addition, we have created an open access database for hyperspectral datasets 45 

collected from natural scenes in the UK and India. Together with comprehensive online build- 46 

and use-instructions, our setup provides an inexpensive and customisable solution to gather 47 

and share hyperspectral imaging data. 48 
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INTRODUCTION 64 

Hyperspectral imaging combines spatial and detailed spectral information of a scene to 65 

construct images where the full spectrum of light at each pixel is known1. Commercial 66 

hyperspectral imaging technology is used, for example, in food industry2,3, agriculture4,5 and 67 

astronomy1. However, these devices are typically expensive, lack the ultraviolet (UV) part of 68 

the spectrum and only few work under water. Moreover, many are bulky and must be attached 69 

to a plane or other heavy machinery, which makes them unsuitable for most basic research. 70 

Here, we present a low-cost and open source hyperspectral scanner design and demonstrate 71 

its utility for studying animal colour vision in the context of the natural visual world. 72 

Animals obtain sensory information that meets their specific needs to stay alive and to 73 

reproduce. For many animals, this requires telling wavelength independent from intensity – an 74 

ability widely referred to as colour vision. To study what chromatic contrasts are available for 75 

an animal to see in nature requires measuring the spectral content of its environment (natural 76 

imaging) and comparing this to the eye’s spectral sensitivity. 77 

Most previous work on natural imaging to study animal colour vision used sets of spectrally 78 

narrow images generated by iteratively placing different interference filters within the range of 79 

400-1,000 nm6–9 in front of a spectrally broad sensor array. So far, a major focus has been on 80 

our own trichromatic visual system that samples the short (blue “B”), medium (green “G”) and 81 

long (red “R”) wavelength (“human visible”) range of the electromagnetic spectrum6,8,10–12. 82 

However, across animals the number and spectral sensitivity of retinal photoreceptor types 83 

varies widely. Perhaps most importantly, and unlike humans, many animals can see in the UV 84 

part of the spectrum, which has not been included in available hyperspectral measurements 85 

from terrestrial or underwater scenes. Johnsen et al. (2013, 2016)13,14 used an underwater 86 

hyperspectral imager (UHI) to map the seafloor in an effort to identify structures and objects 87 

with varying depth, but more shallow underwater habitats have not been studied in this way. 88 

Finally, in 2013 Baden et al.15 used a hyperspectral scanner based on a spectrometer reaching 89 

the UV spectrum of light and an optical fibre controlled by two servo motors. With their setup 90 

it is possible to build hyperspectral images in a similar way to the design presented here, but 91 

the system is both bulky and fragile. In addition, their setup cannot be easily waterproofed 92 

because the point of light from the scene is guided with the optic fibre attached to the 93 

spectrometer. Our design uses mirrors instead to overcome these shortcomings. 94 

Here, we designed and built a low-cost open source hyperspectral scanner from 3D printed 95 

parts, off-the-shelf electronic components and a commercial spectrometer that can take full 96 

spectrum (350-1,000 nm), low spatial resolution (4.7°) images above and under water. With 97 

our fully open design and instructions it is possible for researchers to build and modify their 98 
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own hyperspectral scanners at substantially lower costs compared to commercial devices 99 

(~£1,500 for a spectrometer if unavailable, plus ~£113-340 for all additional components, 100 

compared to tens to hundreds of thousands for commercial alternatives). We demonstrate the 101 

performance of our system using example scans and show how this data can be used to study 102 

animal colour vision in the immediate context of their natural visual world. We provide all raw 103 

data of these and additional scans to populate a new public database of natural hyperspectral 104 

images measured in the UK and in India (https://zenodo.org/communities/hyperspectral-105 

natural-imaging), to complement existing datasets16–18. 106 

 107 

METHODS 108 

Hardware design. 109 

The device is built around a trigger-enabled, commercial spectrometer (Thorlabs CCS200/M, 110 

advertised as 200-1,000 nm but effectively useful above 350 nm). A set of two movable UV 111 

reflecting mirrors (Thorlabs PFSQ10-03-F01 25.4 x 25.4 mm and PFSQ05-03-F01 12.7 x 12.7 112 

mm) directs light from the scanned scene onto the spectrometer’s sensor region via a pinhole 113 

(see also Baden et al. 2013)15. To gradually assemble an image, an Arduino Uno 114 

microcontroller (www.Arduino.cc) iteratively moves the two mirrors via servo-motors along a 115 

pre-defined scan-path under serial control from a computer. At each new mirror position, the 116 

Arduino triggers the spectrometer via a transistor-transistor logic (TTL) pulse to take a single 117 

reading. An optional 9V battery powers the Arduino to relieve its universal serial bus (USB) 118 

power connection. The entire set-up is encased in a waterproofed housing fitted with a quartz-119 

window (Thorlabs WG42012 50.8 mm UVFS Broadband Precision Window) to permit light to 120 

enter. For underwater measurements, optional diving weights can be added to control 121 

buoyancy. All internal mechanical components were designed using the freely available 122 

OpenSCAD (www.OpenScad.org) and 3D printed on an Ultimaker 2 3D printer running Cura 123 

2.7.0 (Ultimaker). For detailed build instructions including all 3D files and Arduino control code, 124 

see the project’s GitHub page at 125 

www.github.com/BadenLab/3Dprinting_and_electronics/tree/master/Hyperspectral%20scann126 

er. 127 

 128 

Scan-paths. 129 

Four scan paths are pre-programmed onto the Arduino control code: a 100 point raster at 6° 130 

x- and y-spacing (60° x 60°), and three equi-spaced spirals at 𝑟 = ±30° at n=300, 600 or 1,000 131 
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points, respectively (Supplementary Figure 1). To generate spirals, we computed n points of 132 

a Fermat’s spiral: 133 

𝑟 =  √𝜃 × 𝑛 134 

𝜃 =  𝜋 (3 −  √5)  135 

  136 

where 𝑟 is the radius and 𝜃, in radians, is the “golden angle” (~137.5°). Next, we sorted points 137 

by angle from the origin and thereafter ran a custom algorithm to minimise total path length. 138 

For this, we iteratively and randomly exchanged two scan positions and calculated total path 139 

length. Exchanges were kept if they resulted in path shortening but rejected in all other cases. 140 

Running this algorithm for 105 iterations resulted in the semi-scrambled scan paths shown in 141 

SFig. 1. 142 

 143 

Data collection. 144 

All recordings shown in this work used the 1,000-point spiral. Acquisition time for each scan 145 

was 4-6 minutes, depending on the time set for each mirror movement (260-500 ms) and the 146 

spectrometer’s integration time (100-200 ms). These were adjusted based on the amount of 147 

light available in the environment to yield an approximately constant signal-to-noise ratio 148 

(SNR) between scans. In all cases, the scanner was supported using a hard-plastic box to 149 

maintain an upright position. All outdoor scans were taken in sunny weather with a clear sky. 150 

For details of the underwater measurement done in West Bengal India, see Zimmermann, 151 

Nevala, Yoshimatsu et al., 201719. In addition, we took a 180° RGB colour photograph of each 152 

scanned scene with an action camera (Campark ACT80 3K 360°) or a ~120° photograph with 153 

an ELP megapixel Super Mini 720p USB Camera Module. 154 

 155 

Data analysis. 156 

All data was analysed using custom scripts written in IGOR Pro 7 (Wavemetrics) and Fiji (NIH). 157 

To visualise scanned images, we calculated the effective brightness of each individual 158 

spectrum (hereafter referred to as ”pixel”) as sampled by different animals’ opsin templates. 159 

In each case, we z-normalised each channel’s output across an entire scan and mapped the 160 

resultant brightness map to 16-bit greyscale or false-colour coded maps, in each case with 161 

zero centred at 215 and range to 0 and to 216-1. We then mapped each pixel onto the 2D plane 162 

using a standard fish-eye projection. To map each spiral scan into a bitmap image, we scaled 163 
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a blank 150x150 target vector to ±30° (same as the scanner range), mapped each of n scanner 164 

pixels to its nearest position in this target vector to yield n seed-pixels, and linearly interpolated 165 

between seed-pixels to give the final image. The 150 x 150 pixel (60 x 60 degrees) target 166 

vector was truncated beyond 30° from the centre to cut the corners which comprised no data 167 

points. We also created hyperspectral videos by adding a 3rd dimension so that each pixel in 168 

the 150 x 150 target vector holds a full spectrum. This way each video is constructed from 800 169 

individual images where one frame equals to 1 nm window starting from 200 nm. 170 

 171 

Principal component analysis. 172 

For principal component analysis (PCA), we always projected across the chromatic dimension 173 

(e.g. human trichromatic image would use 3 basis vectors, “red”, “green” and “blue”) after z-174 

normalising each vector. 175 

 176 

RESULTS 177 

The scanner with water-proofed casing, its inner workings and control logic are illustrated in 178 

Figure 1. Light from the to-be-imaged scene enters the box through the quartz window (Fig. 179 

1A) and reflects off the larger and then the smaller mirror, passing through a pinhole to 180 

illuminate the active part of the spectrometer (Fig. 1B). To scan a scene, an Arduino script is 181 

started via serial command from a computer to iteratively move the two mirrors through a pre-182 

defined scan path (Methods and Supplementary Video 1). At each scan-position, the mirrors 183 

briefly wait while the spectrometer is triggered to take a single reading. All instructions for 184 

building the scanner, including 3D part models and the microcontroller control code are 185 

provided at the project’s GitHub page at 186 

https://github.com/BadenLab/3Dprinting_and_electronics/tree/master/Hyperspectral%20scan187 

ner. 188 

 189 

Scanner performance. 190 

In our scanner design, several factors contribute to the spatial resolution limit of the complete 191 

system. These include spacing of the individual scan-points, angular precision of the servo-192 

motors, the effective angular size of the pinhole as well as the optical properties of the mirrors 193 

and the quartz window. To therefore establish the scanner’s effective spatial resolution, we 194 

scanned a printout of 8.6° black and white bars in the mid-day sun using a 1,000-point spiral 195 

(Fig. 2A, Supplementary Figure 1) and compared the result (Methods) to the original scene 196 
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(Fig. 2B, C). The difference between these two profiles approximately equates to a Gaussian 197 

blur of 2.36° standard deviation, which effectively translates to ~4.7° as the finest detail the 198 

scanner can reliably resolve under these light conditions. While this spatial resolution falls far 199 

behind even the simplest commercial digital camera systems, our scanner instead provides 200 

650 nm spectral range and sub-nm resolution that can be used to identify fine spectral details 201 

in the scanned scene. 202 

To illustrate the scanner’s spectral resolution, we took a 1,000-point scan in the mid-day sun 203 

of a blue door and red brick wall (Fig. 2D) and reconstructed the scene based on human red, 204 

green and blue opsin templates20 to assemble an RGB image (Methods, Fig. 2D). From this 205 

scan, we then picked two individual “pixels” (blue and red dots) and extracted their full spectra 206 

(Fig. 2E). Next, we illustrate the function with examples from terrestrial and underwater 207 

scenes. 208 

 209 

Natural imaging and animal colour vision. 210 

The ability to take high-spectral resolution images is useful for many applications, including 211 

food quality controls2,3, agricultural monitoring4,5 and surface material identification from 212 

space1. Another possibility is to study the spectral information available for colour vision by 213 

different animals. Here, our portable, waterproofed and low-cost hyperspectral scanner 214 

reaching into the UV range allows studying the light environment animals live in. To illustrate 215 

what can be achieved in this field, we showcase scans of three different scenes: a forest scene 216 

from Brighton, UK (Figs. 3-5), a close-up scan of a flowering cactus (Fig. 6) and an underwater 217 

river scene from West Bengal, India (Fig. 7). In each case, the estimated 60° field of view 218 

covered by the scanner is indicated in the accompanying widefield photos (Fig. 3A, 4A, 6A, 219 

7A). To showcase chromatic contrasts available for colour vision by different animals in these 220 

scenes, we reconstructed the forest and cactus data with mouse (Mus musculus), human 221 

(Homo sapiens), bee (Apis melifera), butterfly (Graphium sarpedon), chicken (Gallus gallus 222 

domesticus) and zebra finch (Taeniopygia guttata) spectral sensitivities (Fig. 5B, 6C). The 223 

underwater scan was reconstructed based on zebrafish (Danio rerio) spectral sensitivity (Fig. 224 

7B)20–25. In addition, we provide hyperspectral movies between 200 and 1,000 nm for these 225 

three scenes, where each frame is a 1 nm instance of the scanned scene (Supplementary 226 

Videos 2-4). These videos illustrate how different structures in the scene appear at different 227 

wavelengths. 228 

First, we used the data from the forest scene scan to compute how a trichromat human with 229 

three opsins (red, green and blue) might see it (Fig. 3). To this end, we multiplied the spectra 230 

from each “pixel” with the spectral sensitivity of each of the three corresponding opsins 231 
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templates to create “opsin activation maps” (red “R”, green “G” and blue “B”, Fig. 3A, 232 

Methods), hereafter referred to as “channels”. These false-colour coded, monochromatic 233 

images show the luminance driving each opsin across the scene. In this example, the R- and 234 

G-channels clearly highlight the dark band of trees in the middle of the scene with varying light 235 

and dark structures in the sky and on the ground. However, the B-channel shows mainly 236 

structures from the sky but provides low contrast on the ground. To illustrate how these 237 

channels can be used for our sense of colour vision, we combined them into an RGB image 238 

(Fig. 3A, right). 239 

To determine what chromatic structures are discernible with human spectral sensitivity, we 240 

used principal component analysis (PCA) across the 3-dimensional RGB space by using the 241 

R-, G- and B-channels as 3 basis vectors (Fig. 3B, C). In natural scenes, most variance across 242 

space is driven by changes in overall luminance rather than chromatic contrasts6,9,10. In this 243 

type of data, the first principal component (PC1) therefore reliably extracts the achromatic 244 

(greyscale) image content. From here it follows that all subsequent principal components 245 

(PC2-n) must describe the chromatic axes in the image, in decreasing order of importance. 246 

For simplicity, we hereafter refer to PC1 as the achromatic axis and PC2, PC3 and (where 247 

applicable) PC4 as first, second and third chromatic axes, respectively (C1, 2, 3). When applied 248 

to the example scan of the forest scene with human spectral sensitivity, the achromatic image 249 

with near equal loadings across the R-, G- and B-channels accounted for majority  (97.7%) of 250 

the total image variance (Fig. 3D-F), in agreement with previous work6,9,10. This left 2.3% total 251 

variance for the first and second chromatic axes C1 and C2 (Table 1). In line with Ruderman 252 

et al. (1998)6, the chromatic contrasts emerging from PCA were R+G against B (C1, long- vs 253 

short-wavelength opponency) and R against G while effectively ignoring B (C2, Fig. 3E). These 254 

two chromatic axes predicted from the hyperspectral image matched the main chromatic 255 

comparisons performed by the human visual system (“blue vs. yellow” and “red vs. green”). 256 

To show where in the image different chromatic contrasts exist across space, and to facilitate 257 

visual comparison between animals, we also mapped the chromatic axes into an RGB image 258 

such that R displays C1, G C2 and B C3. Since the trichromat human can only compute two 259 

orthogonal chromatic axes (nOpsins – 1), C3 was set to 215 (i.e. the mid-point in 16-bit) in this 260 

example. These PC-based RGB images ignore the brightness variations of the achromatic 261 

channel, therefore describing only chromatic information in a scene. This specific projection 262 

allows a trichromat human observer viewing an RGB-enabled screen or printout to judge 263 

where in a scanned scene an animal might detect dominant chromatic contrasts, even if that 264 

animal uses more than three spectral cone types for colour vision. The power of this approach 265 

can be illustrated when considering non-human colour vision based on the same dataset. 266 
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Unlike humans, many animals use the ultraviolet (UV) part of the spectrum for vision26,27. To 267 

illustrate how the addition of UV-channel can change available chromatic information, we next 268 

performed the same analysis for a tetrachromatic zebra finch (Fig. 4). This bird uses four, 269 

approximately equi-spaced opsins (red, green, blue and UV), which in addition are spectrally 270 

sharpened with oil droplets23. As before, the monochromatic opsin-channels (RGB and “U” for 271 

UV, Fig. 4A) appeared with R- and G-channels showing structures both in the sky and on the 272 

ground while B- and U-channels mainly highlighted the sky. We next computed the principal 273 

components across the now four opsin channels (Fig. 4B-F). 274 

This time the achromatic axis explained only 92.5% of the total variance leaving 7.5% for 275 

chromatic comparisons, which now comprised three chromatic axes (C1-3, Table 1). As with 276 

humans, the most important chromatic axis compared long- and short-wavelength channels 277 

(C1, R+G against B+U, single zero crossing in Fig. 4E). C2 was also similar to the human 278 

version by comparing R- and G-channels, but in addition paired the R-channel with the UV 279 

and the G-channel with the blue (two zero crossings). While the spatial structure highlighted 280 

by C1 was similar to that of the human, C2 picked up additional details from the ground (Fig. 281 

4D). Finally, C3 (R+B against G+U) highlighted additional structures in the scene that are 282 

largely invisible to the human observer. 283 

 284 

An animal’s opsin complement dictates discernible chromatic contrasts. 285 

To further survey how an animal’s opsin complement can affect the way chromatic details are 286 

detectable in complex scenes, we compared data from the forest scene (Fig. 5) to a close-up 287 

scan of a flowering cactus (Fig. 6) and filtered each using different animals’ spectral 288 

sensitivities: a dichromat mouse, a trichromat human and bee and a tetrachromat butterfly, 289 

chicken and zebra finch. In these scenes, the order of the chromatic axes was largely stable 290 

across opsin complements used (PC1 – achromatic, C1 – long vs short wavelengths, C2 – 291 

R+U vs G+B, C3 – R+B vs G+U), and here we only show the achromatic and C1-3 292 

reconstructions alongside the PC RGB images (Fig. 5A and 6B) next to the spectral sensitivity 293 

of each animal (Fig. 5B and 6C). In each case, the number of chromatic channels shown 294 

corresponds to the number of an animal’s cone types minus 1. 295 

The chromatic axes usable by different animals revealed diverse spatio-chromatic structures 296 

from both scenes (Fig. 5 and 6). Across all animals compared, while C1 still reliably highlighted 297 

a long- vs. short-wavelength axis, the exact image content picked up along C1-n varied between 298 

opsin complements (Fig. 5A and 6B). For example, in the cactus scene the C1 for the chicken 299 

highlighted spatial structures in the image that other animals instead picked up with C2. A 300 

similar difference was also seen in the forest scene, where C2 and C3 in butterfly showed 301 
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structures that were captured in the inverse order in the chicken and zebra finch (Fig. 5A). In 302 

addition, humans and butterflies had more consistent arrangement and structures in chromatic 303 

axes between each other than with other animals, possibly due to their similarly overlapping 304 

spectral sensitivities of the green and red cones. 305 

For all animals in both scenes, the achromatic image content captured at least 91.9% of the 306 

total variance, leaving 1.4-8.1% for the chromatic axes (Table 1). For the forest scene, the 307 

addition of opsin-channels increased the amount of variance explained by the chromatic axes, 308 

and in particular for animals with widely spaced spectral channels (e.g. with chicken and 309 

butterfly, Table 1). In general, more chromatic details was discerned with more cones, 310 

especially when these cones had low-overlap spectral sensitivities covering a wide range of 311 

the natural light spectrum (e.g. from around 350 nm to over 600 nm as with zebra finch). 312 

Moreover, spectral sharpening of the opsin peaks through the addition of oil droplets (chicken 313 

and zebra finch) brought out further details and higher chromatic contrasts in the scanned 314 

scene. The order of importance for the chromatic axes that optimally decompose scans 315 

depended strongly on the set of input vectors – the spectral shape and position of the animal’s 316 

opsins. 317 

 318 

Hyperspectral imaging under water. 319 

As light travels through the water column, water and dissolved particles absorb both extremes 320 

of the light spectrum making it more monochromatic with increasing depth9,28. Mainly because 321 

of this filtering and scattering, underwater light environments have spectral characteristics that 322 

differ strongly from terrestrial scenes. To illustrate one example from this underwater world, 323 

we show a scan from a shallow freshwater river scene (Fig. 7A) taken in the natural habitat of 324 

zebrafish (Danio rerio) in West Bengal, India19. The data was analysed based on the spectral 325 

sensitivity of the tetrachromatic zebrafish with red, green, blue and UV sensitive cones (Fig. 326 

7B)21,26. In this example, the monochromatic R-, G-, and B-channels picked up different 327 

dominant spatial structures in the scene, while the U channel appeared more “blurry” with only 328 

small intensity differences around the horizon (Fig. 7C). Here, the total variance explained by 329 

the chromatic axes C1-3 (14.7%, Fig. 7F) was higher compared to the two terrestrial scenes. 330 

C1 compared long (R+G) and short (B+U) wavelengths between upper and lower parts of the 331 

scene (Fig. 7D, E) that arose from spectral filtering under water. Finally, C2 and C3 brought 332 

out further details that probably correspond to pieces of the imaged vegetation. 333 

 334 

An open database for natural imaging. 335 
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Based on these and other additional scans above and under water from around the world (for 336 

example, see Zimmermann et al., 201719) we created an open access database online 337 

(https://zenodo.org/communities/hyperspectral-natural-imaging). All measurements in the 338 

database are taken with the hyperspectral scanner as described here.  339 

 340 

DISCUSSION 341 

We have designed and implemented an inexpensive and easy-to-build alternative to 342 

commercial hyperspectral scanners suited for field work above and under water. Without the 343 

spectrometer (~£1,500), the entire system can be built for ~£113-340, making it notably 344 

cheaper than commercial alternatives. In principle, any trigger-enabled spectrometer can be 345 

used for the design. Alternatively, spectrometers can also be home-built29,30 to further reduce 346 

costs. 347 

The spatial resolution of the scanner with the 1,000-points scan (~4.7°), though substantially 348 

below that of most commercial camera systems, is close to the behavioural resolution limit of 349 

several model-animals like zebrafish larvae (~3°)31 or fruit flies (~1-4°)32. Notably, most animal 350 

visual systems inherently combine a low-spatial resolution chromatic representation of the 351 

visual world with a high-spatial resolution achromatic representation33–35. As such, our system 352 

can likely also give useful insights into the chromatic visual world of animals with much more 353 

highly resolved eyes. The spatial resolution of our system could principally be further 354 

improved, for example by using a smaller pinhole in combination with higher-angular-precision 355 

motors. However, the amount of natural light for vision is limited, especially when imaging 356 

under water where light is quickly attenuated with increasing depth. As a result, higher spatial 357 

resolution in our system would require a substantially increased integration times for each 358 

pixel. This would result in very long scan-durations, which is unfavourable when scanning in 359 

quickly changing natural environments. 360 

Spatial resolution aside, the spectral range and detail of our scanning approach far exceeds 361 

the spectral performance of interference filter-based approaches, as used in most previous 362 

hyperspectral imaging studies6,8,9,17,36. This difference may be crucial for some questions. For 363 

example, zebrafish have four opsin-genes for middle wavelength sensitive (MWS) cones 364 

(“green cones”) that are used in different parts of the retina and are separated in spectral 365 

sensitivity by few nanometres22,37. Most interference filter setups use relatively broad spectral 366 

sensitivity steps and would therefore miss small details in the natural scenes that could be 367 

picked up with slightly different spectral sensitivities of different opsins. By choosing individual 368 

“pixels” and the spectra they hold, it is possible to analyse fine details in complex scenes that 369 

animals can use for colour vision. This can be done already with very coarse spatial resolution 370 
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to reveal structures that otherwise would remain undetected. In agreement with previous 371 

studies, we have shown how principal component analysis aids to separate achromatic and 372 

chromatic information in natural images6,9. Here, PCA across the chromatic channels 373 

highlights spatio-chromatic aspects in the scene that may be useful for vision. Perhaps not 374 

surprisingly, this reveals major, overall trends in landscapes (Figs. 3-5) with short wavelength 375 

dominated sky and long wavelength dominated ground. This is true also for the underwater 376 

habitats (Fig. 7), where light spectrum in the water column transforms from “blue-ish” short 377 

wavelength dominated to “red-ish” long wavelength dominated with increasing depth19. The 378 

PCs can also highlight details in complex scenes that might otherwise stay hidden but that 379 

may be important for animals to see in their natural habitats. 380 

 381 

CONCLUSION 382 

We have shown how our simple, self-made scanner can produce hyperspectral images that 383 

can be used to study animal colour vision. We have also started to populate an open database 384 

of hyperspectral images from various natural scenes 385 

(https://zenodo.org/communities/hyperspectral-natural-imaging). In the future, it will be 386 

interesting to survey a more varied set of habitats and, for example, to compare how closely 387 

related animal species living in different habitats have evolved with varying visual abilities. 388 

This could also include variations of the presented design, for example to scan larger fields of 389 

view, or a time-automation mode by which the same scene can be conveniently followed over 390 

the course of a day. We will be pleased to facilitate other’s additions to the design through a 391 

centralised project repository 392 

(www.github.com/BadenLab/3Dprinting_and_electronics/tree/master/Hyperspectral%20scan393 

ner) and hope that in this way more researchers will be able to contribute to building a more 394 

global picture of the natural light available for animal vision on earth. 395 

 396 

 397 

FIGURE LEGENDS 398 

Figure 1. A Hyperspectral scanner for low-cost natural imaging. 399 

(A) The waterproof casing with a window (white asterisk) for light to enter. The PVC tube on 400 

top protects the cables to the computer. (B) Internal arrangement of parts: the spectrometer, 401 

Arduino Uno microcontroller, 9V battery, two servo motors (Motors 1 and 2) with mirrors 402 

attached to them and a pinhole. Light reaches first the larger mirror underneath the window of 403 
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the casing, reflects to the smaller mirror and from there through the pinhole to the 404 

spectrometer’s sensor. Light deflected off the first mirror is partly shadowed by the edges of 405 

the casing, which creates dark stripes at the horizontal edges of the scanned images when 406 

the box is closed. These edges are cropped in the presented example scans (Figs. 2 and 7). 407 

Spectral filtering by the quartz window was corrected for in postprocessing (Supplementary 408 

Figure 2). (C) Operational logic. The scanning path is uploaded to the Arduino from the 409 

computer via Serial 2 connection to define the motor movements. After each movement the 410 

spectrophotometer is triggered via TTL to take a measurement and send the data to the 411 

computer vial serial. The ongoing state of the scanning path is fed from the control circuit to 412 

the computer. (D) Circuit diagram. 413 

 414 

Figure 2. Scanner performance. 415 

(A-C) A printout of 8.6° black and white bars (A) was scanned with a 1,000 point spiral 416 

scanning path (B) to estimate the scanner’s spatial resolution. In (C), the average brightness 417 

(red) as indicated in (B) is plotted on top of the idealised brightness profile (black). (D) An 418 

action camera picture of the blue door + red brick wall measured outdoors and an RGB 419 

representation image of the scan when using opsin templates from human spectral sensitivity. 420 

Blue and red dots in the RGB representation refer to the two points used to show examples of 421 

individual spectra in (E). 422 

 423 

Figure 3. An example data set of the forest scene with human spectral sensitivity. 424 

(A) A 180° photo of the forest scene with an approximate 60° scanner covered area (left). On 425 

the right, monochromatic R-, G- and B-channels were constructed from the scanned data by 426 

multiplying spectra from each pixel with the opsin templates (see Fig. 5B, 6C). The RGB image 427 

shows the reconstruction built based on the opsin channels. The different colour appearance 428 

of this RGB reconstruction compared to the photograph is due to differential colour-channel 429 

equalisations in the two images. (B) Pixels from the R-, G- and B-channels aligned in the order 430 

of the measurement with an arrow on the right indicating the direction of the principal 431 

component analysis (PCA). (C) Achromatic and chromatic axes C1-2 aligned in the same order 432 

as in the previous image, and then reconstructed back to images in (D) to add the spatial 433 

information. The RGB image shows C1 in red and C2 in green (blue set to constant brightness). 434 

(E) Loadings from achromatic and chromatic axes, bars illustrating the amount of input from 435 

each opsin channel. (F) The cumulative variance explained (%) for each axis. 436 

 437 
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Figure 4. The forest scene with zebra finch spectral sensitivity. 438 

(A) A still image of the forest scene with the approximated 60° scanner covered area, 439 

monochromatic opsin channels (R, G, B, U) and an RGB reconstruction where R is shown as 440 

red, G as green and B+U as blue. (B-F) As in Fig. 3, with an addition of the UV channel (U) in 441 

all images. The RGB image in (D) displays C1 in red, C2 in green and C3 in blue. 442 

 443 

Figure 5. PC reconstructions of the forest scene. 444 

(A) Achromatic and chromatic PCA reconstructions from the forest scene data for a mouse 445 

(Mus musculus), a human (Homo sapiens), a bee (Apis melifera), a butterfly (Graphium 446 

sarpedon), a chicken (Gallus gallus domesticus) and a zebra finch (Taeniopygia guttata) and 447 

PC RGB pictures. The number of chromatic axes equals to the number of cone types minus 448 

1. Again, the PC RGB picture is constructed from chromatic axes C1-n. In PC RGB, the C1 is 449 

shown as red, C2 as green and C3 as blue. (B) Opsin absorption curves showing the spectral 450 

sensitivity of the cones for each animal. The pink, blue, green and red curves correspond to 451 

UV, blue, green and red sensitive opsins, respectively. 452 

 453 

Figure 6. PC reconstructions of the flowering cactus. 454 

(A) A 120° photo of the scanned scene with a flowering cactus and the approximate 60° 455 

window (black circle) the scanner can cover. (B) Reconstructions for the chromatic axes C1-n 456 

and PC RGB images and the absorption curves for each animal as in Fig. 5. 457 

 458 

Figure 7. An underwater scene from India with zebrafish spectral sensitivity. 459 

(A) A 180° photo of the scanned underwater river scene from West Bengal, India, and the 460 

approximate 60° scanner covered window. (B) The zebrafish opsin complement. (C) The 461 

monochromatic opsin channels (RGBU) and the RGB reconstruction as in Fig. 4. (D) The 462 

achromatic and chromatic axes reconstructed back to images to show where in the scene 463 

information based on each axis can be found. (E) Loadings from each opsin channel as 464 

explained in Fig. 3E.  (F) The cumulative variance explained (%) for each axis. 465 

 466 

Table 1. The total variance explained by chromatic axes C1-n in the forest and cactus 467 

scans. 468 
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 469 

Supplementary Figure 1. Four scanning paths created with the Fermat’s spiral across 470 

the 60° area. 471 

(A) 100 points square, (B) 300 points spiral (C) 600 points spiral (D) 1000 points spiral. 472 

 473 

Supplementary Figure 2. Light spectrum with and without the box. 474 

(A) Spectrometer readings of a clear daylight sky taken through the spectrometer’s fibreoptic 475 

(orange) or through the complete optical path of the scanner (black, i.e. 2 mirrors and a quartz 476 

window, though lacking the fibreoptic). When purchased, the spectrometer is calibrated with 477 

the fibreoptic attached. Accordingly, we computed the corresponding correction curve and 478 

applied it to all scanner data presented throughout this work (B).  479 

 480 

Supplementary Video 1. 481 

A video demonstrating the mirror movements and how light is guided to the spectrometer 482 

through them. 483 

 484 

Supplementary Videos 2-4. 485 

Hyperspectral reconstructions of the three scanned scenes presented in this work, with each 486 

frame corresponding to a 1 nm instance. 487 
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Figure 1. A Hyperspectral scanner for low-cost natural imaging.
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Figure 2. Scanner performance.
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Figure 3. An example data set of the forest scene with human 
spectral sensitivity.
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Figure 4. The forest scene with zebra finch spectral sensitivity.
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Figure 5. PC reconstructions of the forest scene.
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Figure 6. PC reconstructions of the 
flowering cactus.
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Figure 7. An underwater scene from India with zebrafish spectral 
sensitivity.
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Tabel 1. The total variance explained by chromatic axes C1-n in the 
forest and cactus scans.
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Supplementary Figure 1. Four scanning paths created with the 
Fermat’s spiral across the 60° area.
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Supplementary Figure 2: Light spectrum with and without the box

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 15, 2018. ; https://doi.org/10.1101/322172doi: bioRxiv preprint 

https://doi.org/10.1101/322172
http://creativecommons.org/licenses/by/4.0/

