
Hangprinter v4 Manual 

Status Of This Document 

This documentation might still have gaping holes here and there. If you're building a 

v4, say hi and connect with other builders in the discord channel. 

Table of Contents 

• Sourcing 

• Hardware Assembly 

• Wiring 

• Mounting 

• Calibrating Anchors and Spool Buildup 

• Slicing and Usage 

• Final Words 

Sourcing and Preparing Wiring Loom 

Please see 

the bill of materials (a Google Docs spreadsheet). 

 

https://discord.gg/83G3XnPFXh
https://hangprinter.org/doc/v4/#Sourcing
https://hangprinter.org/doc/v4/#Hardware_assembly
https://hangprinter.org/doc/v4/#Wiring
https://hangprinter.org/doc/v4/#Mounting
https://hangprinter.org/doc/v4/#Calibrating_anchors_and_spool_buildup
https://hangprinter.org/doc/v4/#Slicing_and_Usage
https://hangprinter.org/doc/v4/#Final_Words
https://docs.google.com/spreadsheets/d/1_mMTEF9ZFapn_3FrBvEydh70IPTaQG9gKZ7IVj9G2uM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1_mMTEF9ZFapn_3FrBvEydh70IPTaQG9gKZ7IVj9G2uM/edit?usp=sharing


Hardware Assembly 

In the repo, there's an Openscad file called layout.scad. Open that file with Openscad. 

It shows all the parts, including where and how they're supposed to be mounted. 

This view 

of the ceiling unit greets you when you open the layout.scad file with Openscad. Rotate 

the view (inside Openscad) by clicking and dragging with your mouse. Zoom by 

scrolling your scroll wheel. 

To help positioning parts on the ceiling unit, 2d print out the layout_a4.pdf and use it 

as a template. 

As for the circuit boards and the power supply, place them out in a configuration 

similar to this: 

https://gitlab.com/tobben/hangprinter/-/tree/version_4/
https://gitlab.com/tobben/hangprinter/-/raw/version_4/layout_a4.pdf?inline=false
https://hangprinter.org/doc/v4/media/layout.png


Note the 

order of motor wires: Black, red, blue from left to right. Because of a limitation in 

RepRapFirmware for the time being (Sep 2021), we must connect the motor wires in 

exactly that order. Please click the image to open a larger version. Works for all images 

in this manual.

https://hangprinter.org/doc/v4/media/pcb_and_psu_placement.jpeg


Please 

click the image to open a larger version. Works for all images in this manual. 

Hot tips for circuit board placement: 

• Use the spacers shipped with the ODrives also for the Duet3. 

• The Raspberry Pi uses spacers that are twice as long, which may be 3d printed 

(see pi_mount stl in the repo). 

• Make sure that the Duet3's USB port and SD slot are not covered by a 1XD card. 

• Make sure the Pi's HDMI1 port is not covered by the Duet3. 

Wiring 

Warning: The motor wires must be connected in the exact order shown above. 

Otherwise torque mode will run backwards and create chaos. Also, auto-calibration 

won't work because signs will be reversed. 

For all other wiring see 

https://gitlab.com/tobben/hangprinter/-/blob/version_4/stl/pi_mount.stl
https://hangprinter.org/doc/v4/media/believe.jpeg


• Duet 3 docs, 

• 1XD expansion board docs, 

• ODrive docs. 

The Two CAN Buses 

The Duet3 has two CAN buses coming out of its RJ11 (6P4C) contact. These two CAN 

buses live separately, in two different pairs of wires. 

The two centermost conductors in the 6P4C contact carry the main CAN bus. It 

transfers step/dir signals from the Duet3 to the 1XDs. 

The main 

CAN bus goes inside the white wire, from the Duet3 to board 43, to board 42, to board 

41, to board 40. Board 40 should have termination jumpers on. The other 1XD boards 

should not.

https://duet3d.dozuki.com/Wiki/Getting_Started_With_Duet_3
https://duet3d.dozuki.com/Wiki/Duet_3_Expansion_1XD
https://docs.odriverobotics.com/
https://hangprinter.org/doc/v4/media/1XD_addresses.jpeg


The main 

CAN bus goes inside the white wire, from the Duet3 to board 43, to board 42, to board 

https://hangprinter.org/doc/v4/media/easier_to_see2.jpeg


41, to board 40. Board 40 should have termination jumpers on. The other 1XD boards 

should not. 

The rightmost and leftmost pins are not in use in 6P4C contacts. So we have two 

remaining conductors that are not used by the main CAN bus. The two remaining 

conductors carry the ODrives' CAN bus. 

The 

jumper wires carry the ODrives' CAN signal from the telephone cable into the ODrive. 

The ODrives' CAN bus also goes inside the white wire, at least on my machine. It goes 

from the Duet3, through board 43, branches off into one ODrive, the other branch 

continues through board 42, through board 41, and ends in the second ODrive (left 

one on the image below). The 1XD boards does not and can not read the ODrives' CAN 

bus. It just passes straight through the 1XD boards. 

With the ODrive CAN bus wired up, make sure you set the termination resistors 

correctly: 

https://hangprinter.org/doc/v4/media/signal_wire_guy2.jpeg


There are 

little switches inside the red circles, that flip CAN termination resistors on and off. 

Mounting 

This part hasn't changed between HP3 and HP4, so I'm linking to old HP3 

documentation for now: 

• HP3 Build With tobben & Thomas Sanladerer (link directly into mounting) 

Make sure anchors are rigid. Also, make sure your lines form nice Parallelograms (two 

pairs of parallel sides). 

Optional Hoisting System 

Screwing the ceiling unit onto the ceiling can be a bit challenging. I therefore added a 

hoisting system to my own HP4. See it in this tweet and this video. The little CAD 

models I used are shared here. 

https://www.youtube.com/watch?v=iOwjbu2UMlQ&feature=youtu.be&t=3h54m43s
https://en.wikipedia.org/wiki/Parallelogram
https://twitter.com/tobbelobb/status/1428025129406238723
https://youtu.be/coI8I0QsQFI
https://gitlab.com/tobben/hoistit/
https://hangprinter.org/doc/v4/media/term_R_ODrives.jpeg


The 

optional hoisting system. On my own machine I've routed the line back down to the 

ceiling unit one more time compared to what I had on this image. 

Firmwares and Configuration 

Stock RepRapFirmware will work in the future, but for now, I publish the 

RepRapFirmware I use here: link. Stock ODrivefirmware works for us out of the box. 

Please look closely at my config files: 

• config.g for RepRapFirmware 

• configure_odrive.py for ODrivefirmware 

Calibrating Anchors and Spool Buildup 

This has changed a lot between HP3 and HP4. A computer vision system called hp-

mark has been developed to assist, and largely automate, the calibration process. The 

system has been built and proved, see this video: 

Replicating What's Going On In That Video 

Ok, this will be a bit messy. hp-mark is still very much in beta, and requires the user to 

be comfortable doing a few things via the Unix terminal. Our main goal is to be able to 

run the script called get_auto_calibration_data_automatically.sh. 

https://gitlab.com/tobben/hangprinter/-/blob/version_4/firmware/RepRapFirmware/Duet3/Duet3Firmware_MB6HC.bin
https://gitlab.com/tobben/hangprinter/-/blob/version_4/firmware/RepRapFirmware/Duet3/config.g
https://gitlab.com/tobben/hangprinter/-/tree/version_4/firmware/ODrive
https://gitlab.com/tobben/hp-mark/-/blob/master/use/get_auto_calibration_data_automatically.sh
https://hangprinter.org/doc/v4/media/hoistit.png


The computer vision system is called hp-mark. It consists of 

• A camera with LED lights around it, 

• A Raspberry Pi who controls the camera and the LEDs, 

• Six retro-reflective markers, 

• A computer program called hpm 

• A main computer who gets images from the Raspberry Pi, and uses hpm to 

analyze the images. 

See the hp-mark repo, and in particular the README.md and the doc directory for more 

guidance on how to set up hp-mark. The rest of this section will describe how to use 

hp-mark correctly with Hangprinter v4. 

The get_auto_calibration_data_automatically.sh script is executed on the main 

computer. It expects your camera-connected Raspberry to be available at the ip 

called rpi in your /etc/hosts file. It's also assuming your Duet3 connected Raspberry 

to be called duet3 in your /etc/hosts. 

It's fine if duet3 and rpi are actually the same Raspberry Pi board. Just configure them 

to the same ip address. 

The Raspberry Pi needs the camera to be connected and calibrated (as described in 

the hp-mark repo), and it needs ssh to be enabled. It also needs a version of raspistill 

that matches your lens, or else your images' colors will be tinted. To get the one I use 

(matching my Arducam lo-distortion 45 deg lens), do 

$ ssh pi@rpi 

$ mkdir -p repos 

$ cd repos 

$ git clone https://github.com/ArduCAM/NativePiCamera.git 

$ cd NativePiCamera/bin 

$ chmod u+x raspistill_CS_lens 

The duet3 official image is one comes with the camera disabled by default. To enable it 

do 

$ sudo raspi-config 

$ [Interface Options] -> [Camera] -> [Enable] -> [Reboot yes] 

We also have some LED rings around the lens (I have 20. Don's use more than 20, 

since the Rpi's 5V pin can't output much current). To light up the LEDs, I used these 

pins on the camera-connected Raspberry: 

https://gitlab.com/tobben/hp-mark
https://gitlab.com/tobben/hp-mark
https://www.arducam.com/docs/cameras-for-raspberry-pi/native-raspberry-pi-cameras/lens-shading-calibration/


 

If rpi and duet3 Are One And the Same Board In Your Setup 

The Duet3 doesn't use any of pins 4, 6, or 12, although its connector covers them up. 

To work around the connector, you can created a distance between Rpi and the 

connector with nine short jumper wires like this: 

 

https://hangprinter.org/doc/v4/media/LED_pinout.png
https://hangprinter.org/doc/v4/media/Bypass_connector_3.JPG


 

Connect the Raspberry's pins 17-25 with the Duet, as they would have been connected 

through the standard connector. Power the Raspberry Pi with a separate wallplug 

power supply. The official Raspberry Pi Power supply is recommended. 

Anyways... 

Here's how you get code that lights up the LEDs: 

$ ssh pi@rpi 

$ mkdir -p repos 

$ cd repos 

$ git clone https://gitlab.com/tobben/rpi_ws281x.git 

$ sudo apt install python3-pip 

$ sudo pip3 install rpi_ws281x 

Test If Camera Usage Works 

On your main computer, try to take an image and analyze it: 

$ cd <path-to>/hp-mark/use 

$ ./use_ssh.sh --show result 

If everything worked, the LEDs should have flashed, an image should be taken, 

downloaded, analyzed by your hpm program, and the result (an image) should be 

shown on the screen, like this: 

https://hangprinter.org/doc/v4/media/Duetpins2.png


 

The console output should be similar to this: 

$ ./use_ssh.sh --show result 

/home/pi/repos/hp-mark/use 

Captured image remotely: /home/pi/repos/hp-mark/use/images/DiUBh.jpg. 

Copies home: 

DiUBh.jpg 100% 4512KB 4.9MB/s 00:00 

/home/tobben/repos/hp-mark/use 

Will execute: 

../hpm/hpm/hpm ../hpm/hpm/example-cam-params/loDistCamParams2.xml 

../hpm/hpm/example-marker-params/my-marker-params.xml 

./images/DiUBh.jpg --show result 

[5.22761, -28.5536, 6.5542]; 

Double Check Torque Mode 

The get_auto_calibration_data_automatically.sh script will not only use your camera. It 

will also put your motors in torque mode. It assumes the Torque_mode macro has 

been installed into your macro folder on the Duet3. 

Play with the torque mode script in the web interface before running the full 

calibration script. For example, in the web interface, go to the console and to set motor 

A in torque mode, with 0.02 Nm of torque. Feel the spool gently with your and and 

confirm that the motor tries to pull line inwards onto the spool 

https://gitlab.com/tobben/hangprinter/-/blob/version_4/firmware/RepRapFirmware/Duet3/macros/Torque_mode
https://hangprinter.org/doc/v4/media/result.png


M98 P"/macros/Torque_mode" A0.02 

Repeat for all motors ABCD. 

Getting To The Actual Calibration 

With camera and torque mode macro in place, if all the stars align, it should be 

possible for you to collect the calibration data like this: 

$ cd path/to/hp-mark/use 

$ ./get_auto_calibration_data_automatically.sh --show result 

The --show result option will make hpm stop and show you each measurement 

when it's done, and wait for you to press Enter before it continues. 

Example 

of a successful data point collection with the --show result option enabled. 

After collecting 18 data points (don't worry if a few were unsuccessful or printed a 

warning), it prints out the data it has collected in a format that copy/paste friendly for 

the next script we're going to use: simulation.py. 

The output of simulation.py needs to be adjusted by yet another script, called 

just script.m. 

https://gitlab.com/tobben/auto-calibration-simulation-for-hangprinter/-/blob/hp_mark_adjusted/simulation.py
https://gitlab.com/tobben/auto-calibration-simulation-for-hangprinter/-/blob/hp_mark_adjusted/harmonize/script.m
https://hangprinter.org/doc/v4/media/result_hp_mark.png


If again, all stars align, you can re-run simulation.py as described inside script.m, and 

you'll end up with a perfect set of M669 and M666 commands, to copy/paste into 

your config.g. 

For anyone who have reached this far: I salute you. Reach me via Discord and tell me 

you need the auto calibration stuff, and I'll up-prioritize automating further and 

documenting better. 

Slicing and Usage 

I've published the Prusa Slicer configs that I use at gitlab.com/tobben/prusaslicer-

configs. 

Avoid Line Collisions 

Before you start a large print, it's recommended to check if your model fits the print 

volume or not. This is done with line-collision-detector, a tool that is developed 

specifically for Hangprinter build volume verification. 

line-

collision-detector spits out a debug stl like this one upon detecting collision (if you 

asked for it). 

Please note that many slicers will auto center the model before slicing it. line-collision-

detector will not do that. Since you probably want to check if the centered version of 

https://gitlab.com/tobben/hangprinter/-/blob/version_4/firmware/RepRapFirmware/Duet3/config.g
https://gitlab.com/tobben/prusaslicer-configs
https://gitlab.com/tobben/prusaslicer-configs
https://gitlab.com/hangprinter/line-collision-detector
https://hangprinter.org/doc/v4/media/debug_stl.png


your model collides with lines or not, it's recommended to first import your model in 

the slicer, and then export it from the slicer as an stl, and then run it through the line-

collision-detector. 

 

 

 

 

Final Words 

Building, mounting, calibrating, and running a HP4 is a big undertaking, and many of 

the steps are sparsely documented, but you are not alone. Be sure to check out 

the resources, there are some quite good ones. 

If you spot an error or a missing link in the documentation, then please fix it and 

contribute the fix back to the repo. But also, do come by the Discord and say hi, or have 

a chat via Gitlab merge request or issue. 

- tobben 👷 

 

https://hangprinter.org/resources

